
Cyber Network Capture Generator
Final Report

SD-MAY19 Team 5

Client: Argonne National Laboratory

Advisor: Benjamin Blakely

Team Members:

Jacob Perin - Scribe

Luke Tang - Meeting Facilitator

Collin McElvain - Chief Architect

Abdelrahman Baz - Chief Architect

Hazem Abdeltawab - Test Manager

Bernard Ang - Report Manager

0. Executive Summary 4

1. Requirements specification 4
1.1 Functional requirements (tied to the problem statement) 4
1.2 May include high-level requirements & Use-cases 4
1.3 Non-functional requirements (tied to the clients and/or target users) 4

2. System Design & Development 4
2.1 Design plan 4
2.2 Design Objectives, System Constraints, Design Trade-offs 4
2.3 Architectural Diagram, Design Block Diagram -- Modules, Interfaces 4
2.4 Description of Constraints and Interfaces 4

3. Implementation 4
3.1 Implementation Diagram, Technologies, Software Used. 4
3.2 Rationale for Technology/Software Choices 4
3.3 Applicable Standards and Best Practices 4

4. Testing, Validation, and Evaluation 4
4.1 Test plan - testing method (manual, automated, combination), test case selection and
test coverage 4
4.2 Unit testing 5
4.3 Interface testing 5
4.4 System integration testing 5
4.5 User-level testing (if applicable) 5
4.6 Validation and Verification (appropriate to the project) 5
4.7 Evaluation (if applicable) - Performance metrics, Test cases, evaluation results 5

5. Project and Risk Management 5
5.1 Task Decomposition & Roles and Responsibilities 5
5.2 Project Schedule - Gantt Chart (proposed vs. actual) 5
5.3 Risks and Mitigation: Potential (anticipated) vs. Actual (happened) and how they were
mitigated 5
5.4 Lessons learned 5

6. Conclusions 5
6.1 Closing remarks for the project 5
6.2 Future work (potential directions) 5

List of Figures
Figure 1 : Context Diagram for Application
Figure 2 : Data Flow Diagram for Application
Figure 3 : Architectural Diagram for Application
Figure 4 : Login Page
Figure 5 : Home Page
Figure 6 : Scenario Page
Figure 7 : Client Page
Figure 8 : Server Page
Figure 9: Build Page
Figure 10 : History Page
Figure 11 : Detail Page
Figure 12 : Implementation Diagram
FIgure 13: Proposed Gantt Chart (semester 1)
Figure 14: Proposed Gantt Chart (semester 2)
Figure 15: Actual Gantt Chart (semester 1)
Figure 16: Actual Gantt Chart (semester 2 - frontend)
Figure 17: Actual Gantt Chart (semester 2 - backend)

List of Definitions
ETG : Electronical Technology Group
GPL : General Public License
RSPAN : Remote Switched Port Analyzer
SPAN : Switched Port Analyzer
CAPEC : Common Attack Pattern Enumeration and Classification

0. Executive Summary

Acknowledgement
We would like to acknowledge our client, Benjamin Blakely for his contribution to our project.
Benjamin provided the key insight and expertise that greatly assisted our project. He has
dedicated a significant time to meet with us every week as we continue to work out the details of
the project.

General Problem Statement
The needs to analyze traffic for hosts, applications, or services is essential in the world of
computer security. Traffic is a way of describing how a computer sends information to the
internet, and how the computer receives that information back. Traffic analysis is used to detect
any malicious or harmful programs that can enter and harms one's computer, like a virus. Thus,
preventing any undesired outcomes. This project can be used to easily track malwares and bad
traffic running through a network or application.

General Solution
The solution of the problem is to create a program that automatically analyzes traffic data of
many types, helping researchers create more innovative ways to combat malwares, and other
related softwares. This proposed program will not only serve as a catalyst for researchers to
come up with potential solutions, but also provide a simple understanding of Traffic and its effect
in computers. The team hopes that we are able to come up with an web interface on the front
end, with scripts and a program that will automate VM creation to test multiple scenarios that will
be specified by the administrator, resulting in a printout of PCAP/Netflow files to show traffic.

1. Requirements specification
1.1 Functional requirements

1. Ubiquitous Requirements
1.1. The hypervisor software shall be remotely accessible through a web application

1.2. The web application shall provide secure user authentication prior to access

1.3. The web application shall allow the user to create network capture from

pre-determined combination of client, server, daemon(s), application, and activity

1.4. The generated network flow shall be stored in a database for later access

2. Event-driven Requirements
2.1. When the user selects client/server combination the hypervisor shall allocate and

create two separate virtual machines

2.2. When the hypervisor has created a virtual machine the configuration

management shall establish a connection and load configuration file to virtual

machine

2.3. When configuration management has initialized a virtual machine the application

shall load/execute behavioral scripts on the virtual machine

3. State-driven Requirements
3.1. While the virtual machines are active the server shall store network traffic to

database

1.2 Non-functional requirements
Non-functional requirements

● Performance

○ Demonstration of a working system.

● Scalability

○ Prototype will handle at least 2 virtual machines on a network.

○ Store scenario data for at least one hour long session worth of traffic flow of the

virtualization network.

● Availability

○ Available only to our team of developers and permissioned users during our

prototype development.

● Reliability

○ Always properly store compressed PCAP in a reliable manner.

○ Spun up virtual machine scenarios should have a 99% success rate.

● Recoverability

○ No backup data will be required for the prototype development.

● Maintainability

○ Be able to continue development of features and bug fixes of the project beyond

the 492 Spring semester at Iowa State University.

● Regulatory

○ The majority of software should be written in Python 3.

○ All software incorporated in our project has been selected because of their

licensing and open source status. The GNU General Public License (GNU GPL

or GPL) is a widely used free software license, which guarantees end users the

freedom to run, study, share and modify the software.The Apache License is a

permissive open source software license — so users can release modified

versions of the Apache licensed product under any license of their choice. Users

can freely use, modify, distribute and sell a software licensed under the Apache

License without worrying about the use of software: personal, internal or

commercial.

■ KVM

● KVM kernel module: GPL v2

● KVM user module: LGPL v2

● QEMU virtual CPU core library (libqemu.a) and QEMU PC system

emulator: LGPL

● Linux user mode QEMU emulator: GPL

● BIOS files (bios.bin, vgabios.bin and vgabios-cirrus.bin): LGPL v2

or later

■ Selenium

● Apache 2.0 License

■ Ansible

● GNU GPL

■ OpenStack

● ASLv2

■ PFSense

● Apache 2.0 License

■ Squid Proxy

● GNU GPLv2

● Usability

○ All use case functionality will be accessible through a web application.

● Interoperability

○ Accessible through the Iowa State network for the development team.

○ Virtual networks between the virtual machines should be manageable.

https://en.wikipedia.org/wiki/Permissive_free_software_licence

● Cost

○ No costs associated with software as everything is open source.

○ Hardware initial cost and maintainability for hosting VMs, data, server, client

information.

● Platform compatibility

○ Web application compatible with any machine capable of hosting any popular

web browser.

● Security

○ Any password information will be salted and hashed passwords stored separately

from the Server.

○ Any execution of potentially malicious software should be isolated to the virtual

network, this will be done with a virtual router and firewall using a combination of

PFsense loaded with squid to ensure network connectivity to ensure traffic will

not leave the environment. In additional any rules for KVM itself may restrict

access to the outside network.

● Safety

○ All hardware should be stored and operated in a safe and responsible manner

● Ethicality

○ All work should be original for our development team with credit given to proper

sources.

○ No unauthorized copying of software.

2. System Design & Development
2.1 Design plan

Figure 1: Context Diagram

Figure 2: Data Flow Diagram

Application will consist of a simple front facing web application. This application will use a web
framework and database that is optimal for backend function.

Project implementation utilizes Django, modern web framework, to allow for python language in
backend.

Django backend, python, makes calls to (semi-dynamic) creation factory for Ansible Playbook.
Parameters passed in are used to generate a playbook (installation instructions.) Ansible kicks
off OpenStack using module (ansible feature.)

OpenStack Compute (in combination with dependent services) will install operating system,
reserve resources, and establish veth pair on isolated bridge, Open VSwitch.

Ansible playbook recognizes machine boot up. Establishes SSH connection with the virtual
machines in the scenario and installs scenario dependent applications.

Gateway, PFsense Router, analyzes traffic and passes determined non-malicious traffic to libvirt
network (non-isolated bridge.)

Ansible determines successful application install, and uploads Selenium script for specific
scenario. Ansible starts each Selenium script.

Selenium begin behavior automation once files have been started on each virtual machine for
described scenario.

On completion of scenario, PCAP data sniffed via Open VSwitch bridge is stored in MySQL
database for later access.

Web application history page displays new entry uploaded to MySQL. Allows for download of
PCAP data for specific scenario.

2.2 Design Objectives, System Constraints, Design Trade-offs

Design Objectives:

● In a safe manner, simulate scenarios between a client and server in a virtual
envioronment.

● Simple management, repeatability, and collection of scenarios from a remotely
accessible application.

System Constraints:
● Open source software (free)
● Single machine

Design Trade-Offs:

● Simplicity
○ Open source projects add complexity
○ VMware / Ansible Tower / AWS may offer more elegant solutions

2.3 Architectural Diagram, Design Block Diagram -- Modules,
Interfaces

● Figure 3: Architectural Diagram

Figure 4: Login Page

● User key in authentication in the login page

Figure 5: Home Page

● User is then met with a Homepage. This page and the pages to come can only be

accessed if the user is authorized

Figure 6: Scenario Page

● User is able to create a scenario to run on the Virtual Machine

Figure 7: Client Page

● User is able to create a Client running on the OS preferred.

Figure 8: Server Page

● User is able to create a Server running on the OS preferred.U

Figure 9: Build Page

● User then is able to build a virtual machine with the following options.

Figure 10: History Page

● As the system builds the VM, the information is saved on the database and
displayed in the History page.

Figure 11: Detail Page

● By clicking on a test, more details will be shown of the build

2.4 Description of Constraints and Interfaces

Interface Specifications
Our project considerations will be almost entirely software based. Dealing with

virtualization, web application, and a database; the only hardware interaction will be hosting the
software. Because of this we will have four main interface specifications:

1. Web application UI.
a. This is the interactivity between the user client and the rest of the system through

the centralized web application.
b. This interface will require ease of access in a user friendly fashion.
c. This interface should only be used by authorized and authenticated users
d. User will be able to provide input for client, server, daemon, application, and

activity based on predetermined lists.
2. Framework interface with OpenStack.

a. OpenStack instantiates virtual machines through nova service.
3. Framework interface with Ansible.

a. OpenStack service access will be automated through the use of dependent
Ansible module

b. Client, server, daemon, application, and activity input will be configured and
installed through simple ansible playbook tasks

4. Framework interface with Database.
a. Handle the storage and retrieval of PCAP data gathered from the virtual

environment

Constraints
Our project consists of two major constraints. The first is the use of open source

software. This constraint caused our team some struggle, as open source softwares’ do not
always integrate well with each other. So this constraint took a considerable amount of time to
figure out, until we finally found the set up that worked the best for our project (Ansible, KVM,
OpenStack, Django).

The other major constraint was the use of only one machine. This constraint was easy
to over come as much of the front end development was done on personal computers and then
uploaded to GIT. This led to easy development for our two teams.

3. Implementation
3.1 Implementation Diagram, Technologies, Software Used.
Implementation Diagram

Figure 12: Implementation Diagram

Technology and Software

Hardware

The team will be using 2 desktops provided by the Electrical and Computer Engineering
Department’s Electronics and Technology group to be used in the department’s lab as our
“server” that will be running the virtual machines as well as databases. These desktops will help
us to run multiple VMs without using our own personal computers. We will also be able to keep
them running for a very long time.

Software

● Ansible
○ Software provisioning, configuration management, and application deployment

tool. This is responsible for the initial kick off of the virtual environment after
receiving the request from the web application.

● MySQL
○ Relational database management system used for storage of user credentials

and captured virtual environment network traffic.
● Openstack

○ Software platform deployed as Infrastructure-as-a-service that has been utilized
in this project for the deployment of our network infrastructure and initial virtual
machines.

● PFsense paired with squid
○ A firewall/router software distribution that is incorporated into our project to

contain and monitor network traffic while still allowing internet access to the
virtual machines.

○ Squid is a caching is forwarding HTTP web proxy responsible for helping aid in
the security of the system by filtering traffic.

● Python 3
○ High-level, interpreted, general-purpose programming language used for

scenario scripting and use in the web framework.
● Django

○ Based on Python this web framework serves as a easy way to maintain routes to
the database, web application, and virtual environment.

● Selenium
○ Selenium has been selected for its ability to execute javascript and emulate

human testing scenarios when paired with a firefox or chrome driver. This is
scripted in Python and is necessary for generating randomized traffic at a human
pace that the system can record.

● KVM Hypervisor
○ Kernel-based Virtual Machine (KVM) is a virtualization module that allows the

kernel to function as a hypervisor. We use this to expose the /dev/kvm interface

where the host feeds simulated input and output, maps the videos display back to
the host, and sets up the image and address space for the guest VMs.

● Github
○ Github is widely used for maintaining source code and keeping track of work

done.It’s space is provided by the ETG department from Iowa State University

3.2 Rationale for Technology/Software Choices
● Ansible

○ Ansible was ultimately chosen due to its OpenStack Support
○ Very active community (compared to Chef)
○ Simplicity of playbook instantiation

● MySQL
○ Well understood technology by most team members

● Openstack
○ OpenStack is the best open source choice for virtual machine creation
○ This has many benefits over containers -- in terms of the networking aspect in

project.
○ HIGH customizability for project needs

● PFsense paired with squid
○ PFsense paired with squid became the solution after several failed iterations of

implementing solutions such as: OpenWRT, ISERINK, and Streisand because of
incompatibility issues or lack of relevant documentation. Its ease of use and
notable reputation in the information technology security fields have proven true
as the router and firewall solution for our virtual network.

● Python 3
○ Python was chosen over our other option Ruby early on in the research phase

because of the teams past experience with Python and its extreme flexibility in
fulfilling deliverables. It has the added benefit of coming preloaded in Ubuntu
operating systems that are used for the virtual guests.

● Django
○ Simple Python tie ins to backend logic

● Selenium
○ Selenium was chosen for its behavioral capabilities in most closely automatically

reenacting human web browsing traffic. Its original design is for use in testing
browsers as a human would use them with the flexibility of using different driver
binaries such as Firefox or Chrome drivers.

● KVM Hypervisor
○ KVM is used most actively in the hypervisor community
○ Supports about any operating system (compared to Xen)
○ Default with Ubuntu

● Github

○ Github has become an industry standard for group tech development for its ability
to backup revisions of code and allow concurrent development of the same
project.

3.3 Applicable Standards and Best Practices
PEP8

● Code styling standard for all python code
CAPEC

● active catalog of attack vectors
● Tasks executed in our application for any given attack scenario should correlate directly

to the matching vector described in the cataloged attack scenario
● Malicious applications should be limited to the intended virtual environment

IEEE Standard for Local and metropolitan area networks - Bridges and Bridged Networks
● Background: Network developed must contain malicious traffic to specific host and client.

Accomplished by bridging the traffic generated by each host through a proxy.

● Section 7 as outlined in this document describes best practices when bridging a network

of VLANs. Incorporating this standard will prevent network leaks that could result in

consequences for victim users outside network.

4. Testing, Validation, and Evaluation
4.1 Test plan - testing method

Manual:

Frontend:

● Displayed MySQL Data to front end
○ User
○ Scenario
○ History

● Scenario creation interface
○ Creates client/server on backend
○ Updates user through creation process
○ Sends new scenario data to database

● History interface
○ Loads data from MySQL Database

Backend:

● OpenStack creates virtual machine on KVM Hypervisor
● OpenStack attaches virtual machine to isolated-bridge, and can access internet through

PFsense gateway
● PCAP is captured, filtered by protocol, stored, and accessible through application.

System Testing:

● Python code is PEP-8 complaint.
Acceptance Testing:

● Server has defined host, application, and service installed.
● Client has defined host, application, and service installed.
● PCAP is captured, filtered by protocol, stored, and accessible through application.
● Application should be accessible through a web interface.

Nonfunctional testing
Performance Testing:

● Web application should be able to remotely access the server in timely manner.
Scalability Testing:

● Web application should be able to initialize two virtual machine combinations for packet
capture as well as the stack virtual machine and PFsense virtual machine.

● Web application should be restricted from surpassing maximum capacity of server.
Security Testing:

● Web application is locked to specific accounts.
● All network traffic is routed through PFsense and Squid proxy.

Usability Testing:
● Web application input fields for creation create virtual machine.
● Captured network traffic is accessible through web application.

Compatibility Testing:
● Server should be runnable on multiple box configurations.

Maintainability Testing:
● Server setup should be documented and replicable.
● Design decision, models, and interfaces should be documented for maintaining the

application after passing on the software

4.2 Interface testing
Frontend

● User selects scenario, server, client and number of iterations and builds the VM.
● User selects applications and updates the MySQL scenario database.
● User selects operating system for server and client and updates the MySQL database.

Backend

● PCAP capture on HTTP client/server requests between the two virtual machines.
● PCAP capture on nmap port scan from one virtual machine to another.
● PCAP capture on SSH requests between two virtual machines.
● PCAP capture on Selenium web crawler impersonating human traffic.

4.3 System integration testing
● OpenStack and Ansible communicate and can instantiate virtual machine through

module
● Open VSwitch and OpenStack allow peer-to-peer traffic communication
● Open VSwitch forwards traffic through PFsense
● Libvirt forwards traffic through PFsense

5. Project and Risk Management
5.1 Task Decomposition & Roles and Responsibilities

Initial Task Approach

1. Configure and launch standalone virtual machine using KVM.

2. Configure Ansible to be able to ensure compatibility with the project.

3. Capture PCAP traffic in the virtual machine.

4. Configure and launch specific virtual network with 2 virtual machines.

5. Capture PCAP traffic in the virtual network.

6. Develop a server to handle basic requests and integration with a database.

7. Establish database/preliminary storage.

8. Establish front end web application.

9. Store preliminary PCAP data in database/preliminary storage through server.

10. Develop Ansible to handle required requests for initial kickoff of the virtual system.

11. Develop Database (or preliminary storage):

a. Establish tables

b. Establish dependencies

c. Establish meaningful requests within the scope of our project

12. Develop Server:

a. Create and Handle KVM VMs

b. Create and Handle Django

c. Handle data to and from database

d. Accept and respond to requests from the front end web application

e. Safe and secure

f. Handle compressed PCAP files

13. Develop Web Application:

a. Establish interactivity that suits all required use cases

b. Make user friendly and appealing

14. Develop Automation Scripts:

a. Selenium to generate proper traffic

b. Client and server to generate proper traffic

c. SSH test to generate proper traffic

d. Nmap port scan to generate proper traffic

15. Work on stretch goals:

a. Multiple operating systems

b. Develop users functionality

c. Cloud interactivity

Roles and Responsibilities
Jacob Perin - Scribe

● System Architecture Design
○ Wide-Scale integration research

■ Operating system -> application -> support / integration
○ OpenStack configuration

■ Custom service configuration (neutron, glance, etc.)
● Integration Testing

○ Open VSwitch
■ Highly customizable bridge
■ Separate OpenStack logic for integration with PFSense router

○ PFsense
■ Forwarding between Open VSwitch and Libvirt network through PFsense
■ Initial box setup

○ Ansible
■ Initial script creation
■ Integration into OpenStack
■ VM Creation feasibility

○ OpenStack
■ Custom security (aka purge it)
■ Custom setup with Compute (local machine) and Controller (VM)

● Management
○ Initial research into team member parts

○ Delegation and initial integration of team member parts

Luke Tang - Meeting Facilitator

● Initial research on Xen, KVM, capturing PCAP data, Selenium, and early software
dependencies.

● Initial research and testing on network solutions focused around proxy/router/gateway
solutions and possible integration with ISERink. This lead to further investigation into
Squid, Streisand, SecurityOnion, PFsesnse, OpenWRT, and ESXi image conversions.

● Expanded into possible additional network features such as Wireshark, PeStudio,
RegShot, TotalCommander, ProcessExploerer, ProcessMonitor, Fakenet, ApadeDNS,
Hexinator, Resource Hacker for further insight on PCAP data.

● Responsible for understanding secondary consequences for vulnerabilities in the
hypervisor to prevent write executions on shared folders and malware execution in a
virtual environment.

● Manual creation of the virtual system to create and test required behaviors and capturing
and saving their generated network traffic for the following scenarios:

○ SSH from one virtual guest to another.
○ Client/Server interaction supplying dummy HTML file.
○ Nmap port scan from one virtual guest on another .
○ Selenium web crawler emulating human traffic to the internet on a guest virtual

machine.
● Proper implementation of the PFsense router/firewall loaded with squid into the virtual

environment.
● Aid in the research and deployment of the initial virtual network capable of being

recreated by Openstack with the full functionality required for the project.

Collin McElvain - Chief Architect

● Initial research on Ansible, Chef, Puppet, Xen, and KVM
● Experimented with small bits of Chef, until JAke found an easier route through Ansible

and KVM.
● Helped with frontend decisions, mostly UI.
● Assisted Ambaz in the static IP setup for the frontend on our Apache server
● Began integration of front and backend through dynamic Python scripts. These scripts

would access data through Django and create dynamic Ansible “playbook”.
● Worked with Bernard on frontend integration with scripts.
● Worked with Lucas to bring his scripts to the frontend, thus completing our 4 main

scenarios the client wanted.

Abdelrahman Baz - Chief Architect

● Initial research on Netflow, Chef, Puppet, and Django
● Experimented with Chef initially but then moved to the frontend. So, experimented with

Django by making simple web apps to get familiar with the Django modules
● Created a simple design for our web interface using Django, but then we switched to a

different design.
● Responsible for running our web tool on Apache instead of Django’s default server

which is meant for development and testing only.

● Made Apache the main server of the project and connected it to work with MySQL
(instead of SQLite our testing database) and Django

● Binded a static IP (given to us from ISU) to Apache server to be able to access the web
tool from other machines connected to ISU network

● Ran tests on the server to make sure it worked smoothly and fixed permissions issues
related to the server-database connection

Hazem Abdeltawab - Test Manager

● Initial research on Python, Django, MySQL, HTML, CSS.
● Experimented with different Web building Frameworks such as Flask, Pyramid and

Django to decide which Framework best suits our project.
● Worked with different Databases such as Postgresql, Oracle, SQLite, and MySQL to see

which best suits Django Framework
● Responsible for replacing built-in database (SQLite) inside Django with more competent

Database (MySQL).
● Designed first prototype for web interface with coding language, HTML and styling

language, CSS.
● Generated tests for mock database to ensure compatibility before adding backend

connections to the project.
● Added styling PEP 8 to the project to ensure compatibility with client’s requirements and

needs.
● Final testing to ensure connectability between frontend and backend.

Bernard Ang - Report Manager

● Research on the Django Framework, Python and how to incorporate them with our
project

● Ran multiple test runs to make sure that the Django Framework will work well with our
project

● Integrated mySQL together with our project as the main database
● Main designer of the currently used web interface
● Worked with Collin on the integration between the frontend and backend
● Made sure all reports that are needed for the class are done in a timely manner

5.2 Project Schedule - Gantt Chart (proposed vs. actual)
Proposed:

Figure 13: Proposed Gantt Chart (semester 1)

Figure 14: Proposed Gantt Chart (semester 2)

Actual:
Semester 1:

Figure 15: Actual Gantt Chart (semester 1)

Semester 2:

Front-end:

Figure 16: Actual Gantt Chart (semester 2 - frontend)

Back-end:

Figure 17: Actual Gantt Chart (semester 2 - backend)

5.3 Risks and Mitigation: Potential (anticipated) vs. Actual
(happened) and how they were mitigated

Initial Risk Assessment:

● End product goal is ambiguous. Although individual parts (initiate hosts, generate

behavior on hosts, etc.) are defined, the approach itself is unclear.

○ Ex: The “Attack Scenario” is a series of actions. The extent of this is unknown.

Creating the behavior of scenario itself, such as: generating specific web traffic

traffic, attack execution, etc. is going to be heavily scenario dependent and

possibly unique for each scenario. How to approach this is in a automated

system is not clear.

● Project has no clear completion criteria. If we are able to initialize a set of hosts for an

attack scenario this does not define “completion.” Notion has been made toward several

network protocols and attack vectors, however, this has been and will be subject to

change as project progresses.

● Project is at risk to not be completed in allotted time frame, for such reasons:

○ Students designing the “network capture generator” have no experience in

system design. This has, and will lead to failed design decisions.

○ Python, although ideal for back end glue is not familiar to any of the students.

Learning and design patterns will be imperfect, and subject to frequent change.

○ Students designing the front end have little to no experience with web

frameworks or best practices. This will lead to slow development, and will most

likely need to be changed frequently.

● Scope of work is fluid. The actual extent of “attack vector automation” is unknown.

● Using multiple open source projects such as xen, openstack, and chef is possible.

However, this is a lot. Especially for a student who is new to concepts such as

“virtualization”. This risk, over time propagates. What seems manageable becomes less

manageable a week later when student learns new concepts.

● Scripting a single attack is manageable. However, creating an environment that is built to

run different attacks remotely on hosts is difficult. How the server stores attacks,

accesses, and executes attacks on virtual hosts will define the manageability of the

system itself.

Actual risk realization:
Our initial risk assessment were swiftly and repetitively realized throughout the continued

development of this project. The ambiguous goals that were not well defined in the beginning of
research and development left the project needing to be adaptable to incorporate a large variety
of scenario subjects. These increased constraints demanded very flexible and open ended
development that was not easy to test and sometimes left the team demoralized when
hard-work was hard to bring to evidence with demonstrated working systems.

Further the lack of knowledge in virtual environments and specifically virtual networking
put a huge strain on time resources for the team. Even after creating functioning networks we

would have problems automating the creation process of these networks to function in the same
manner that they did when they were set up manually.

The open source technology proved to be effective when the team finally found working
solutions between different softwares. However the constant iterative process of creating failed
states was time consuming and frustrating.

An unforeseen issue was a phase of hardware failure where the lack of memory on the
physical machine caused the machine to lock up and require a manual power cycle. This
impeded progress from the loss of work, as well as limit the ability to work remotely on the
machine.

Risk mitigation:
To solve our first issue we redefined the project deliverables with our client to meet much

more detailed and realistic goals for what the team was capable of. This included completely
removing the immediate need for malicious attack vectors to be executed and tested, but setting
up an environment that would allow for the safe execution of such a scenario. We further nailed
down our testing operating system to Ubuntu for the virtual guests. We then defined four vastly
different but important scenarios: client/server, SSH, nmap port scan, and a web crawler where
the first three would be communication between the two virtual guests and all scenarios would
generate observable network traffic.

Overcoming the frustrations of incompatibility and lack of expertise was an extensive
process of trial and error with many hours dedicated to the research and development of new
systems that could be tested to meet specifications. Many of these technologies worked
together or served their purpose individually, but lacked documentation or related materials that
were required in setting up the automatic process.

The hardware failures were a frustrating and time consuming setback, but this was
eventually remedied by upgrading the memory the host machines to meet the demand of
running its own operating system as well as four or more virtual domains with their own
processes.

5.4 Lessons learned
This project showed many challenges throughout the year. A lot of these challenges

came from inexperience with the tools we were using as well as changes in scope. The biggest
lesson learned throughout this project was the need for communication. Our project started off
by splitting into groups in order to work as fast as possible on the multiple problems ahead.
However, the two teams that were formed lacked in communication throughout a period of time.
This led to misunderstandings that then led to work that would not fulfill the other teams
requirements.

Once communication was established as our biggest issue, we began to get into a better
groove and workflow. This led to eventual completion of our project. Communication is key in a
long-term project with multiple tasks. Without communication, our team was not very efficient in

producing work that would integrate well. With communication everyone knew exactly what was
needed to be done and our workflow was much better.

6. Conclusions
6.1 Closing remarks for the project

This project required several iterations of functional testing before arriving with a working
prototype. Free and open-source constraints on all technologies left us limited with a
time-consuming trial and error process to eliminate incompatibile or outdated technologies. Our
team was forced to abandon Chef, Apache, Xenserver, Vagrant and many other options after
extensive research and development. In the end our entire team learned in depth about
networking solutions, web applications, and virtual environments.

6.2 Future work (potential directions)
This project can be expanded upon by adding support for more operating systems,

number of virtual machines, as well as added scenarios. Further, the environment has the
capability to contain potentially malicious softwares while maintaining the ability to capture and
monitor network traffic for further investigation.

