

Cyber Network Capture Generator
Project Plan

Sd-May19 Team 5

Client: Argonne National Laboratory

Advisor: Benjamin Blakely

Team Members:

Jacob Perin - Scribe

Luke Tang - Meeting Facilitator

Collin McElvain - Chief Architect

Abdelrahman Baz - Chief Architect

Hazem Abdeltawab - Test Manager

Bernard Ang - Report Manager

1

Table of Contents

1 Introductory Material 4

1.1 Acknowledgement 4
1.2 Problem Statement 4
1.3 Operating Environment 4
1.4 Intended Users and Intended Uses 4
1.5 Assumptions and Limitations 5
1.6 Expected End Product and Other Deliverables 5

2 Proposed Approach and Statement of Work 6
2.1 Objective of the Task 7
2.2 Functional Requirements 7
2.3 Constraints Considerations 8
2.4 Previous Work And Literature 9
2.5 Proposed Design 11
2.6 Technology Considerations 11
2.7 Safety Considerations 12
2.8 Task Approach 12
2.9 Possible Risks And Risk Management 16
2.10 Project Proposed Milestones and Evaluation Criteria 17
2.11 Project Tracking Procedures 18
2.12 Expected Results and Validation 18
2.13 Test Plan 18

3 Project Timeline, Estimated Resources, and Challenges 20
3.1 Project Timeline 20
3.2 Feasibility Assessment 21
3.3 Personnel Effort Requirements 22
3.4 Other Resource Requirements 23
3.5 Financial Requirements 23

4 Closure Materials 24
4.1 Conclusion 24
4.2 References 24
4.3 Appendices 24

2

List of Figures
Figure 1 : Context Diagram (Iteration 1) for Application
Figure 2 : Data Flow Diagram Level 2 for Application
Figure 3 : Communication Diagram (Iteration 1) for Xen
Figure 4 : Component Diagram (Iteration 1) for Application
Figure 5 : Sequence Diagram (Iteration 1) for Application
Figure 6 : Use Case Diagram (Iteration 1) for Application
Figure 7 : Gantt Chart for the First semester
FIgure 8: Gantt Chart for the Second semester

List of Tables
Table 1 : Major Requirements

List of Definitions
ETG : Electronical Technology Group
GPL : General Public License
RSPAN : Remote Switched Port Analyzer
SPAN : Switched Port Analyzer

3

1 Introductory Material

1.1 Acknowledgement
We would like to acknowledge our client, Benjamin Blakely, and our faculty advisor, Thomas
Daniels, for their contributions to our project. Benjamin has dedicated significant time to meet
with us every week as we continue to work out the details of the project. Dr. Daniels has
contributed his time and technical advice to our team, as well as assisted in steering us in the
right direction on multiple occasions.

1.2 Problem Statement

The needs to analyze traffic for hosts, applications, or services is essential in the world of
computer security. Traffic is a way of describing how a computer sends information to the
internet, and how the computer receives that information back. Traffic analysis is used to detect
any malicious or harmful programs that can enter and harms one's computer, like a virus. Thus,
preventing any undesired outcomes.

The solution of the problem is to create a program that automatically analyzes traffic data of
many types, helping researchers create more innovative ways to combat malwares, and other
related softwares. This proposed program will not only serve as a catalyst for researchers to
come up with potential solutions, but also provide a simple understanding of Traffic and its effect
in computers.

1.3 Operating Environment
For this project, the operating environment will be a web application. A web application is
popular because it provides the user with an interface that is easy to use and ensures a
user-friendly experience. Additionally, The web application will be designed to withhold a large
number of requests without crashing while the user is writing commands.

1.4 Intended Users and Intended Uses

● Intended Users: our tool will be used by cyber researchers to analyze captures of traffic
from a particular combination of host, application, and service. They will be able to use a

4

web application that can automate the traffic generation and analyze it for the scenario
they specify.

● Intended Uses: our product will allow a user to select OS, service, and traffic types for a

set of servers and clients, and then generate that traffic and analyze it in an entirely
automated manner. The above scenario might be for the purposes of traffic engineering,
generating training datasets for machine learning, or general host/protocol analysis.

1.5 Assumptions and Limitations

Assumptions:

● The tool will use a predefined list for traffic types
● The generated traffic file won’t be stored locally
● Chef and Xen can be used together to create a properly configured VMs
● Free version of Chef is enough for our purposes

Limitations:

● The project is cost free
● PCAP files are very large that we might run out of space

1.6 Expected End Product and Other Deliverables

● Web application:
Our end product will be an extensible web application tool that will allow a user to
select the type of OS, Service, and traffic types (from a predefined list) for a set
of servers and clients, and then, in an automated manner, create and configure
the necessary virtual machines, initiate a packet capture (saved to PCAP files)
and the specified traffic type, and save the capture for later analysis.

● PCAP files:
Packet capture files of the generated traffic, for some different combinations of
OS, service, traffic type, saved for later analysis.

5

2 Proposed Approach and Statement of
Work

Figure 1: Context Diagram (1st Iteration) for Application

6

Figure 2: Data Flow Diagram Level 2 for Application

2.1 Objective of the Task
The goal of this project is to create a tool that will help in cyber-related research when there is a
need to analyze captures of traffic from a particular combination of host, application, and
service. As described in the end product section above, the tool will make it easier and less
time-consuming for the researchers to analyze the traffic of interest.
·

2.2 Functional Requirements

1. Ubiquitous Requirements
1.1. The hypervisor software shall be remotely accessible through a web application
1.2. The web application shall provide secure user authentication prior to access
1.3. The web application shall allow the user to create network capture from

pre-determined combination of client, server, daemon(s), application, and activity
(Figure 2: Process 1 Input)

1.4. The generated network flow shall be stored in a database for later access (Figure
2: Process 4 Output)

2. Event-driven Requirements
2.1. When the user selects client/server combination the hypervisor shall allocate and

create two separate virtual machines (Figure 2: Process 2 Abstraction)

7

2.2. When the hypervisor has created a virtual machine the configuration
management shall establish a connection and load configuration file to virtual
machine (Figure 2: Process 2 Incoming Arrows)

2.3. When configuration management has initialized a virtual machine the application
shall load/execute behavioral scripts on the virtual machine (Figure 1: (IN)
“behavior” adjacent system and (OUT) “Virtualization” adjacent system)

3. State-driven Requirements
3.1. While the virtual machines are active the server shall store network traffic to

database (Figure 1: (OUT) “capture” adjacent system)
4. Unwanted Behaviour Requirements

4.1. If hypervisor detects insufficient resources then the web application shall restrict
virtual machine creation and display “insufficient resources” warning

4.2. If server detects insufficient storage then the web application shall display
“insufficient storage” warning

5. Complex Requirements
5.1. When the network traffic is being stored, if the server detects insufficient storage,

then the web application shall display “insufficient storage warning”

2.3 Constraints Considerations
Non-functional requirements

● Performance
○ Demonstration of a working system

● Scalability
○ Prototype will handle at least 5 virtual machines on a network
○ Store scenario data for at least 100 one day long worth of traffic flow of the

virtualization network
● Availability

○ Available only to our team of developers and permissioned users during our
prototype development

● Reliability
○ Always properly store compressed PCAP in a reliable manner
○ Spun up virtual machine scenarios should have a 99% success rate

● Recoverability
○ No backup data will be required for the prototype development

● Maintainability
○ Be able to continue development of features and bug fixes of the project through

the Spring 2019 semester 492 class at Iowa State University
● Regulatory

○ The majority of software should be written in Python 3
○ All software incorporated in our project has been selected because of their

licensing and open source status. The GNU General Public License (GNU GPL
or GPL) is a widely used free software license, which guarantees end users the

8

freedom to run, study, share and modify the software.The Apache License is a
permissive open source software license — so users can release modified
versions of the Apache licensed product under any license of their choice. Users
can freely use, modify, distribute and sell a software licensed under the Apache
License without worrying about the use of software: personal, internal or
commercial.

■ Xen
● GNU General Public License, version 2

■ Selenium
● Apache 2.0 License

■ Chef
● Apache 2.0 License
● https://www.chef.io/terms-of-service/

● Usability

○ All use case functionality will be accessible through a web application
● Interoperability

○ Accessible through the Iowa State network for the development team
○ Virtual networks between the virtual machines should be manageable

● Cost
○ No costs associated with software as everything is open source
○ Hardware initial cost and maintainability for hosting VMs, data, server, client

information
● Platform compatibility

○ Web application compatible with any machine capable of hosting any popular
web browser

● Security
○ Any password information will be salted and hashed passwords stored separately

from the Server
○ Any execution of potentially malicious software should be isolated to the virtual

network
● Safety

○ All hardware should be stored and operated in a safe and responsible manner
● Standard Protocol

○ PEP8-compliant source code as a Git repository
● Ethicality

○ All work should be original for our development team with credit given to proper
sources

○ No unauthorized copying of software

2.4 Previous Work And Literature
 Relevant Team Experience

9

https://en.wikipedia.org/wiki/Permissive_free_software_licence
https://www.chef.io/terms-of-service/

● Python 2.7, 3.7, JavaScript
● Database systems
● Lightweight server deployment
● Web development
● Selenium

○ Web Scraper
○ Web Crawler
○ URL redirects/Web testing

● VMware/VirtualBox virtual machine experience

Existing market products
● VMware Workstation

○ Vmnet-sniffer: captures all virtual machine traffic to the virtual machines at once
to be sorted out later

■ Isolate HTTP traffic sent through host level load balancer to a random
virtual machine

■ Determine where specific DNS queries are getting picked up
■ Low level network management packet realizations seperate from main

network
○ Works well with Vagrant and CloudShark API requests to automate functions

Relevant market products

● Wireshark and PerformanceVision Virtual Capture
○ Run concurrently in promiscuous mode
○ Visualize traffic within virtual server
○ Virtual switch acts like hub for VMs

● Phantom TAP and GigaVue
○ Intrusive kernel level sends data to analysis device
○ Sends copies of data
○ Costly
○ License upgrade costs

● Vswitch for VMWare and Openvswitch for Virtualbox/Xen
○ Clean install
○ Flexible
○ Costly
○ ESX license
○ Physical switch for RSPAN and ERSPAN capabilities

Difference from market products

● Completely free
● Based entirely on open source material
● Application that will combine resources to automate traffic capture
● Generate virtual traffic automatically with prewritten automation scripts

10

2.5 Proposed Design

Possible Solutions:

● Virtual Machine
○ VirtualBox: Too buggy for projects that take a long time
○ VmWare: License requires a purchase
○ Xen: Too much flexibility
○ KVM: Not prefered

We went with Xen because it is flexible and closely relates to our project.

● Generate Traffic
○ Puppet: Doesn’t include all features for our project
○ Chef: Has everything our project requires.
○ Ansible: Buggy
○ Expect Scripts: Not preferred

● Traffic Capture
○ PCAP: Record everything in the traffic.
○ NetFlow: Records only IPfix

We went with both, because we thought it would be nice to have multiple options in the traffic
generator software

2.6 Technology Consideration
Our project will require building a virtual network based on user input. Therefore, we will be
utilizing a lot of scripts. Our team considered two options for our scripting language, Python and
Ruby. The project also requires a web application. Our team has a lot of web application
development experience. Therefore, we came to a fast conclusion of using an MVC framework
with HTML, JS, and CSS. There is also the free tools that our project will be utilizing. The team
researched multiple options for these tools.

When considering the scripting languages to use, Dr. Blakely, had seemed enthusiastic about
using Ruby for all of our scripting. Blakely also did not mind Python in Ruby’s place. Therefore,
the team started off in the direction of Ruby; however, only one member of our team had ever
worked with Ruby. Whereas a majority of the team had a lot of experience in Python. This

11

brought us to our conclusion. In order to save time by not researching into Ruby, we decided to
use Python as our main scripting language for all of our backend functionality.

The project also requires the help of a few tools for the virtualization aspect of the system. Our
team researched multiple different Hypervisors to use for our project. The team knew a lot
about VMWare and VirtualBox. However, there were a lot of bug issues with VirtualBox that we
did not think was worth the risk. VMWare was not an option as a license was required.
Therefore, our team studied multiple new hypervisors to use. The two that stood out the most
were, KVM and Xen. The research our team did showed that Xen had a lot of flexibility with its
multiple hooks. KVM seemed to not be as flexible as Xen, but was still a viable option. The
scope of our project brought the team to a conclusion that more flexibility of our hypervisor may
be useful down the road. Therefore, we will be using Xen as our hypervisor for this project. Dr.
Blakely had also stated that he had experience with Xen.

Our project also requires the configuration of multiple virtual machines based on user
specification. Therefore, we needed to find a configuration management tool to make this
process as efficient as possible. Our team had the value of Dr. Blakely, giving us insight on
three major configuration management tools. These tools, Chef, Ansible, and Puppet, are all
very popular configuration management tools around the world. However, only two of them are
free, Chef and Ansible. Our team made a quick decision on these two possibilities, as Chef
used daemons and had a massive library for learning the software.

2.7 Safety Considerations
The overwhelming majority of development work here is software development that has no
safety considerations. The only safety concerns exist around the transportation, storage, and
maintenance of hardware.

2.8 Task Approach

1. Configure and launch standalone virtual machine using Xen
2. Configure Chef to be able to ensure compatibility with the project
3. Capture PCAP traffic in the virtual machine
4. Configure and launch specific virtual network with 2 virtual machines
5. Capture PCAP traffic in the virtual network
6. Develop a server to handle basic requests and integration with a database
7. Establish database/preliminary storage
8. Establish front end web application
9. Store preliminary PCAP data in database/preliminary storage through server
10. Develop Xen API to handle required requests according to Figure 1

12

11. Develop Chef to handle config requests according to Figure 4
12. Develop Database (or preliminary storage)

a. Establish tables
b. Establish dependencies
c. Establish meaningful requests within the scope of our project

13. Develop Server
a. Create and Handle Xen VMs
b. Create and Handle Chef
c. Handle data to and from database
d. Accept and respond to requests from the front end web application
e. Safe and secure
f. Handle compressed PCAP files

14. Develop Web Application
a. Establish interactivity that suites all use cases as described in figure 5
b. Make user friendly and appealing

15. Develop Automation Scripts
a. Selenium to generate proper traffic

16. Develop Analysis tools for PCAP data
17. Work on stretch goals

a. Multiple operating systems
b. Develop users functionality
c. Cloud interactivity

Figure 3: Communication Diagram (Iteration 1) for Xen

13

This figure describes how Xen and the Xen API will be interacting with the front end web
application and database through specific calls.

Figure 4: Component Diagram (Iteration 1) for Application

This figure shows how all components of our system fit together and where they will reside.

14

Figure 5: Sequence Diagram (Iteration 1) for Application

15

This figure shows the sequence of events between our components for chef’s functionality.

Figure 5: Use Case Diagram (Iteration 1) for Application

This figure shows all front end enabled use cases for the entirety of the project.

2.9 Possible Risks And Risk Management

Risks

16

● Incompatibility of software involved
○ Xen needs to handle applications and scripts launching automatically
○ Chef needs to work with Xen to automate configuration
○ Front end application will need to handle all use cases and properly communicate

with virtual network, server, and server to database
● Hardware limitations

○ May not be able to hold as many scenario data as we would like
○ May not be able to launch complex virtual networks

● Time constraints
● Lack of expertise in virtualization of a network

Risk Management Strategies

● Communication in development
○ Slack as main conduit for the development team
○ Properly documenting and commenting on developed code
○ Proper use of GitHub

● Sharing expertise and knowledge
○ Code reviews

● Shrinking prototype executables to fit hardware limitations - or obtain more or better
hardware

● Project planning and progress reports ensuring minimization of dead time
○ Use of Trello for task completion and visualization of progress

2.10 Project Proposed Milestones and Evaluation Criteria

● Milestone 1: Install and remotely configure XEN, hypervisor, running on server
○ Test 1: Ensure hypervisor properly allocates resources
○ Test 2: Ensure hypervisor and server are configured to the network and

accessible from other machine.
● Milestone 2: Utilize Chef, configuration management tool, to standardize generation of

predetermined list of daemon and application
○ Test 1: Ensure Chef is configured properly on server to access nodes (created

virtual machine)
○ Test 2: Ensure Chef Cookbooks (config files) are properly accessible by correct

nodes
● Milestone 3: Generate and configure virtual machines running multiple operating

systems, initial setup scripts, and initialize as node on chef network
○ Test 1: Ensure initial daemon with chef-client is accessible from chef workstation

(located on server.)
○ Test 2: Ensure chef node properly pulls updates from server

● Milestone 4: Generate behavior of created virtual machine builds, filter to specific traffic,
and store to in PCAP and Netflow.

17

○ Test 1: Ensure PCAP is properly stored to database
○ Test 2: Ensure PCAP collects correct data
○ Test 3: Perform load testing on database when multiple virtual machines are

running and storing data to database.

2.11 Project Tracking Procedures
● Team Work Allocation:

○ https://trello.com/b/elddC5KG
○ Pool tasks (To Do) and delegate to proper team members in team meeting

● Weekly Status Reports and Project Documentation:
○ https://sdmay19-05.sd.ece.iastate.edu/
○ Testing documentation, Github activity, Team member information, and Posted

Status Reports

2.12 Expected Results and Validation
Our end goal will be a fully functional testing web application. The web application will allow the
user to create different testing scenarios for a virtual network. The user will then be able to test
different malware and applications on their created virtual machines on the virtual network. Our
team plans to have extensive unit testing on these front-end functionalities. Our team has
prioritized the usability of the application. There will be testing on all functionalities of the
front-end after any change. These tests will be run through Hazem.

The application will be able to create up to 5 VM’s on one network. The user is able to
manipulate these machines on the web app through the configuration pages. The user will also
be able to configure how the machines talk to each other. This includes the traffic protocols
sent (HTTP, IMCP, HTTPS, SMTP, etc.), the amount of traffic sent, and the direction of the
traffic throughout the network. The team has scalability as one of our top priorities. The team
will run stress tests on the system throughout the designing process, in order to, get to the
desired usage goals.

The user will also be able to get the traffic data from their loaded scenario. The web application
will allow for filtering and downloading of the desired traffic on the virtual network. The system
will save all of this data into PCAP files. The capturing of the traffic is the main purpose for this
project. Our team will be testing this traffic filter and capture on multiple different browsers.

2.13 Test Plan
This project has multiple components to it. Therefore, the team has planned for thorough
testing of the system. Most of the tests will be integration tests as we are using multiple tools to

18

https://trello.com/b/elddC5KG
https://sdmay19-05.sd.ece.iastate.edu/

come to our one solution. We will also have front-end testing on the web application that will be
primarily based on the usability and user experience.

Throughout the design and development of the system, our team will have a test plan that we
will be adding to as problems arise. This test plan will be used when unexpected problems or
unexpected values occur. The team will update the test plan to account for these problems in
the future testing of the component. The team plans to run through this updated test plan as our
final run through of the entire application and system.

The integration testing will begin at the start of development. Our group will begin the
development of the client and server. The first few integration tests between the connection of
our client and server will begin.

From here we begin the integration of our hypervisor and our configuration management tool,
Chef. The connection between Chef and our hypervisor will be crucial for our project to
succeed. All of the integration testing for this connection will be run from the individual boxes
themselves, as well as from the Chef Workstation. These tests will be looking for edge cases
from possible inputs into the configuration management tool.

The integration of the traffic data from the system to the database and then to the web
application will account for a lot of the testing time. This data must be able to be captured,
saved, and filtered. This is the most important aspect of the system. Our team will be testing
every available protocol, as well as filtering through all possible combinations. The team will
also be pushing the system to its data capturing limits through stress tests.

The front-end of this project must be user friendly as well as very hands on with the scenarios.
Our team will be creating multiple scenarios in order to find any headaches or problems with the
front-end functionality. We will be going over the visual appeal of the front-end as well.

The final testing will be done by the entire team over the whole system. This testing will be
through the team-contributed test plan that we made throughout the development process. This
will include all problems that we ran into, as well as small unit tests.

19

3 Project Timeline, Estimated Resources,
and Challenges

3.1 Project Timeline
Semester 1 → Gantt Chart

Figure 7 : Gantt Chart for first semester

● The Research above means to keep learning as we go through projects, and not learn a
specific task and then try to brute force the project at one.

● The 3 tabs describing the project plan are important because they provide us with a
series of steps to help implement our project on time.

● Building a project is building an interface that holds all pieces of our project. For
example, a website that holds all aspects of the project together

● Setting up hypervisor is one of the crucial steps in this project. A hypervisor acts as the
brain of our program, which tells every component how to do the job.

● Testing VM’s is starting a couple of virtual machines and testing them before applying
them to our project.

● Starting Chef is analyzing and configuring our Chef script that will eventually be
responsible for creating our virtual machines.

● Testing PCAP and Netflow is working with these types of traffic recorders before
including them in our project.

20

● First semester Wrap is when we review everything and make sure every component is
working well separately, before merging all of them together in the second semester.

Semester 2 → Gantt Chart

Figure 8 : Gantt Chart for second semester

● Configuring a user input such that, when the user commands something, the program
retrieves that command and does some work in the back end.

● Connect the client and server to the hypervisor before adding any other parts to the
project..

● Adding the Xen software to the hypervisor to enable direct commands between the two
of them.

● Adding Cookbooks and Allowing Chef to sends commands to the virtualization software,
and creating virtual machines with certain requirements via Xen.

● Configuring Packet Capture (PCAP) and Netflow to record traffic arriving and leaving
from one certain virtual machine.

● If time allows, add extra features that the clients would like to be added in the program,
such as virtualization for Windows 10.

● Prepare for final presentation and final submission in the last 2-3 weeks of the semester.

3.2 Feasibility Assessment

The project is to create a tool that will enable cyber researchers to generate a specific type of
traffic, capture and store the generated traffic, and analyze it in entirely automated manner. We

21

will follow the timeline mentioned in section 3.1 above, as we believe that this timeline will meet
the requirements for implementing the web application tool.

3.3 Personnel Effort Requirements

Major Requirements:

Task Description Estimated Time
Required

Research Xen Research on how Xen suits our requirements and
how to use it for our project

10 hours

Research Chef Research on the Chef suits our requirements and
how to use it for our project

10 hours

Research pairing
Xen and Chef

Research on how the pair of Xen and Chef work
side by side each other to achieve our
requirements

10 hours

Testing Virtual
Machines

Come up with several test cases or scenarios that
we can run on the virtual machine according to
our needs

30 hours

Testing PCAP
and NetFlow

Come up with several test cases or captures that
can used as examples of outputs we would want
according to our needs

30 hours

Setting up
Hardware

This task requires setting up hardware in the
department lab to be used as a “server” to run our
Virtual Machines

5 hours

Design Project
Layout

Developers are required to come up with a design
of the interface of the project

20 hours

Setup Xen Setting up Xen to work in ways that fits our needs
and requirements

10 hours

Setup Chef Setting up Chef to work in ways that fits our
needs and requirements

10 hours

Develop
Frontend

Developing the frontend of the project, such as
the layouts and the webpage using various
libraries .

60 hours

Develop Backend Developing the backend of the project, such as
integrating the automation of the virtual machines

90 hours

22

that will be used in our project.

Testing Full
Project

This will require the develops to run multiple test
cases to test the major functions of our project
and testing the final project to work according to
our requirements

50 hours

Beautifying layout
of Project

This will be a optional task that requires the
developers to further beautify the layout of the
project and make it more user-friendly

20 hours

Documenting
Software

Members are required to use proper
documentation of all code, design pattern and
architectures used throughout the project

100 hours

Table 1 : Major Requirements

3.4 Other Resource Requirements

To conduct the project, there are a few other resources that are required on both the software
and hardware sides. On the software side, the team will be using GitHub for code control as well
Google Drive to maintain the documentation required for the project. The Google Drive storage
will be provided by Iowa State University while GitHub will be provided by the Electrical and
Computer Engineering Department’s Electronics and Technology group. We also will be using
NotePad++ as our preferred IDE. NotePad++ is provided as a free and code produced on it can
be used/redistributed under the terms of the GNU General Public License. On the hardware
side, the team will be using 2 desktops provided by the Electrical and Computer Engineering
Department’s Electronics and Technology group to be used in the department’s lab as our
“server” that will be running the virtual machines as well as databases.

3.5 Financial Requirements

The project is proposed to be developed cost free. The hypervisor used for the project, Xen, is a
free and open-source software that is only subjected to the requirements of the GNU General
Public License. For the configuration management of the virtual machines, the team will be
using Chef. Chef has a paid as well as a cost-free version. The cost-free version of Chef will
most probably be enough to support the requirements needed for the project.

23

4 Closure Materials

4.1 Conclusion
Cyber attacks are becoming an increasingly bigger problem for the world every day. The
problem with trying to prevent any attack on a system is that we can only stop what we know of.
Therefore, the best mitigation for stopping any cyber attack on a system is to test the actual
attack on your system. You can then identify the symptoms of those attacks on your system
when they are attempted.

The only way to safely test a malware on your own system is through a sandbox of your system.
This would be a virtual environment where you can record and control the activity of your
system and the malware. There have been tools and software made just for these tests;
however, these tools and softwares are not cheap and can sometimes be very strict on their
configuration.

Therefore, our solution is to create a free, fully configurable testing software. Our team will build
a web interface that will control a virtual environment. This will allow users control over the
systems added to the environment as well as control over all the data sent over the virtual
network. This solution will help push the research for cyber-security forward.

4.2 References

Websites used for Research of Tools:

1. https://www.xenproject.org/
2. https://wiki.xenproject.org/wiki/Xen_Project_Beginners_Guide
3. http://www-archive.xenproject.org/products/xenhyp.html
4. https://www.xenproject.org/developers/teams/xapi.html
5. https://docs.chef.io/chef_overview.html
6. https://www.seleniumhq.org/
7. http://www.tcpdump.org/manpages/pcap.3pcap.html
8. https://www.solarwinds.com/what-is-netflow

4.3 Appendices
All diagrams were used in explaining the parts

24

https://www.xenproject.org/
https://wiki.xenproject.org/wiki/Xen_Project_Beginners_Guide
http://www-archive.xenproject.org/products/xenhyp.html
https://www.xenproject.org/developers/teams/xapi.html
https://docs.chef.io/chef_overview.html
https://www.seleniumhq.org/
http://www.tcpdump.org/manpages/pcap.3pcap.html
https://www.solarwinds.com/what-is-netflow

