

Cyber Network Capture Generator

Project Plan

Sd-May19 Team 5

Client:​ Dr.Benjamin Blakely

Advisor​: Dr. Thomas Daniels

Team Members:

Jacob Perin -​​ Scribe

Luke Tang - ​​Meeting Facilitator

Collin McElvain - ​​Chief Architect

Abdelrahman Baz - ​​Chief Architect

Hazem Abdeltawab - ​​Test Manager

Bernard Ang - ​​Report Manager

Table of Contents

1 Introductory Material 4

1.1 Acknowledgement 4

1.2 Problem Statement 4

1.3 Operating Environment 5

1.4 Intended Users and Intended Uses 5

1.5 Assumptions and Limitations 5

1.6 Expected End Product and Other Deliverables 6

2.1 Objective of the Task 7

2.3 Constraints Considerations 9

2.4 Previous Work And Literature 10

2.5 Proposed Design 12

2.6 Assessment of Proposed Design 15

2.7 Technology Consideration 15

2.7 Safety Considerations 16

2.8 Task Approach 16

2.9 Possible Risks And Risk Management 19

2.10 Project Proposed Milestones and Evaluation Criteria 20

2.11 Project Tracking Procedures 21

2.12 Expected Results and Validation 21

2.13 Test Plan 22

3 Project Timeline, Estimated Resources, and Challenges 23

3.1 Project Timeline 23

3.2 Feasibility Assessment 24

3.3 Personnel Effort Requirements 25

3.4 Other Resource Requirements 26

3.5 Financial Requirements 26

2

3.6 Standards 27

4 Closure Materials 27

4.1 Conclusion 27

4.2 References 27

4.3 Appendices 28

3

List of Figures

Figure 1: Context Diagram for Application

Figure 2: Data Flow Diagram Level 2 for Application

Figure 3: Wireframe for Login Page

Figure 4: Wireframe for Build Page

Figure 5: Wireframe for Creating a Scenario

Figure 6: Wireframe for History Page

Figure 7: Wireframe for Displaying Details of each Test

Figure 8: Communication Diagram for Xen

Figure 9: Component Diagram for Application

Figure 10: Sequence Diagram for Application

Figure 11: Use Case Diagram for Application

Figure 12: Gantt Chart for the First semester

FIgure 13: Gantt Chart for the Second semester

List of Tables
Table 1 : Major Requirements

List of Definitions
ETG : Electronical Technology Group

GPL : General Public License

RSPAN : Remote Switched Port Analyzer

SPAN : Switched Port Analyzer

CAPEC : Common Attack Pattern Enumeration and Classification

VM : Virtual Machine

4

1 Introductory Material

1.1 Acknowledgement
We would like to acknowledge our client, Benjamin Blakely, and our faculty advisor, Thomas

Daniels, for their contributions to our project. Benjamin has dedicated significant time to meet

with us every other week as we continue to work out the details of the project. Dr. Daniels has

contributed his time and technical advice to our team, as well as assisted in steering us in the

right direction on multiple occasions.

1.2 Problem Statement
The needs to analyze traffic for hosts, applications, or services is essential in the world of

computer security. Traffic is a way of describing how a computer sends information to the

internet, and how the computer receives that information back. Traffic analysis is used to detect

any malicious or harmful programs that can enter and harms one's computer, like a virus. Thus,

preventing any undesired outcomes.

The solution of the problem is to create a program that automatically analyzes traffic data of

many types, helping researchers create more innovative ways to combat malwares, and other

unsafe softwares. This proposed program will not only serve as a catalyst for researchers to

come up with potential solutions, but also provide a simple understanding of Traffic and its effect

in computers.

There is also need for the development of a software that analyzes computer traffic for the

following reasons:

1. Computer traffic is essential in gaining information that directly affects the inner-structure

of a malware.

2. Computer traffic help in creating tests that detect the presence of malware.

3. Computer traffic maintain a safe software in which the hardware runs on.

5

Thus, our project creates a software that benefit the community in many ways, and not just 1 or

2 ways. We aim for our project to be controlled by Argonne National Laboratory, and they

reserve the right to use it either privately or publicly.

1.3 Operating Environment

● For this project, the operating environment will be a web application.

● A web application is convenient because it provides the user with an interface that is

admirable and easy to use

● The web application will also be designed to withhold a large number of requests without

crashing while the user is typing commands.

1.4 Intended Users and Intended Uses

● Intended Users: our tool will be used by cyber researchers to analyze captures of traffic

from a particular combination of host, application, and service. They will be able to use a

web application that can automate the traffic generation and analyze it for the scenario

they specify.

● Intended Uses: our product will allow a user to select OS, service, and traffic types for a

set of servers and clients, and then generate that traffic and analyze it in an entirely

automated manner. The above scenario might be for the purposes of traffic engineering,

generating training datasets for machine learning, or general host/protocol analysis

6

1.5 Assumptions and Limitations
Assumptions:

● The tool will use a predefined list for traffic types

● The generated traffic file won’t be stored locally

● Chef and Xen can be used together to create a properly configured VMs

● Free version of Chef is enough for our purposes

● Being able to run lots of VM without running into problems (having enough

memory)

Limitations:

● Open Source Projects only

● Python language use in back end

● Full PCAP storage -- memory constraint

● The tool will be used for research purposes only

1.6 Expected End Product and Other Deliverables

● Tool -- Packet Capture Generator

○ Web Application (Front End) End Product

■ Secure/Standard Framework

● Use of modern web framework -- Django

● Referenced security best practices for web application

■ Abstracted instantiation of client,server, and attack scenario (pre-define

the criteria available)

● Generate configuration file for client and server setup

○ Specify the OS, Application, Services, etc.

○ Ex:

■ Client: Fedora 9, Firefox

■ Server: Apache, Drupal

■ Network: Proxy

● Generate configuration file for attack scenario

○ Series of tasks to be executed between client and server

7

(This is not fully understood)

■ Ability to view generated output from defined process above

● PCAP Storage

○ Compressed

○ Full/Partial PCAP Capture

○ Delete/Download PCAP

● SSH information for created host systems

■ Ability to view server health

● Remaining storage

● Error logs

○ Virtual network environment (Back End) end product

■ Configuration file parsing and execution logic

■ Automated creation of server and client box

■ Automated execution of created attack scenario

■ PCAP Storage

■ Configuration Option Storage

■ Remotely accessible

● Wiki & Source Code

○ Backward tracking of bugs and team member task allocation

■ Fallback Versions

○ Documented design process

■ Failed designs with reasons

■ Logical process leading to final system designs

● ​​Written report:

 A report describing the architecture,testing methodology, and

 expected performance characteristics of the code.

8

2 Proposed Approach and Statement of

Work

2.1 Objective of the Task

The goal of this project is to create a tool that will help in cyber-related research when there is a

need to analyze captures of traffic from a particular combination of host, application, and

service. As described in the end product section above, the tool will make it easier and less

time-consuming for the researchers to analyze the traffic of interest.

Figure 1: Context Diagram (1st Iteration) for Application

9

Figure 2: Data Flow Diagram Level 2 for Application

2.2 Functional Requirements

1. ​​Ubiquitous Requirements
1.1. The hypervisor software shall be remotely accessible through a web application

(Figure 1: (IN) “Web Application,” adjacent system)

1.2. The web application shall provide secure user authentication prior to access

(Figure 1: “Web Application,” adjacent system)

1.3. The web application shall allow the user to create network capture from

pre-determined combination of client, server, daemon(s), application, and activity

(Figure 2: User Data Store)

1.4. The generated network flow shall be stored in a database for later access (Figure

2: Process 5 Output)

2. Event-driven Requirements
2.1. When the user selects client/server combination the hypervisor shall allocate and

create two separate virtual machines (Figure 2: Process 2 Abstraction)

2.2. When the hypervisor has created a virtual machine the configuration

management shall establish a connection and load configuration file to virtual

machine (Figure 2: Process 2 Incoming Arrows)

10

2.3. When configuration management has initialized a virtual machine the application

shall load/execute behavioral scripts on the virtual machine (Figure 1: (IN)

“behavior” adjacent system and (OUT) “Virtualization,” adjacent system)

3. State-driven Requirements
3.1. While the virtual machines are active the server shall store network traffic to

database (Figure 1: (OUT) “capture,” adjacent system)

4. Unwanted Behaviour Requirements
4.1. If hypervisor detects insufficient resources then the web application shall restrict

virtual machine creation and display “insufficient resources” warning

4.2. If server detects insufficient storage then the web application shall display

“insufficient storage” warning

5. Complex Requirements
5.1. When the network traffic is being stored, if the server detects insufficient storage,

then the web application shall display “insufficient storage warning”

2.3 Constraints Considerations

Non-functional requirements

● Performance

○ Demonstration of a working system.

● Scalability

○ Prototype will handle at least 5 virtual machines on a network.

○ Store scenario data for at least 10 one day long worth of traffic flow of the

virtualization network.

● Availability

○ Available only to our team of developers and permissioned users during our

prototype development.

● Reliability

○ Always properly store compressed PCAP in a reliable manner.

○ Spun up virtual machine scenarios should have a 99% success rate.

● Recoverability

○ No backup data will be required for the prototype development.

● Maintainability

11

○ Be able to continue development of features and bug fixes of the project through

the Spring 2019 semester 492 class at Iowa State University.

● Regulatory

○ The majority of software should be written in Python 3.

○ All software incorporated in our project has been selected because of their

licensing and open source status. ​The GNU General Public License (GNU GPL

or GPL) is a widely used free software license, which guarantees end users the

freedom to run, study, share and modify the software.​The Apache License is a

permissive open source software license​ — so users can release modified

versions of the Apache licensed product under any license of their choice. Users

can freely use, modify, distribute and sell a software licensed under the Apache

License without worrying about the use of software: personal, internal or

commercial.

■ Xen

● GNU General Public License, version 2

■ Selenium

● Apache 2.0 License

■ Chef

● Apache 2.0 License

● https://www.chef.io/terms-of-service/

● Usability

○ All use case functionality will be accessible through a web application.

● Interoperability

○ Accessible through the Iowa State network for the development team.

○ Virtual networks between the virtual machines should be manageable.

● Cost

○ No costs associated with software as everything is open source.

○ Hardware initial cost and maintainability for hosting VMs, data, server, client

information.

● Platform compatibility

○ Web application compatible with any machine capable of hosting any popular

web browser.

12

https://en.wikipedia.org/wiki/Permissive_free_software_licence
https://www.chef.io/terms-of-service/

● Security

○ Any password information will be salted and hashed passwords stored separately

from the Server.

○ Any execution of potentially malicious software should be isolated to the virtual

network, this will be done with a gateway/proxy to ensure network connectivity to

ensure traffic will not leave the environment. In additional any rules for Xen itself

may restrict access to the outside network.

● Safety

○ All hardware should be stored and operated in a safe and responsible manner

● Ethicality

○ All work should be original for our development team with credit given to proper

sources.

○ No unauthorized copying of software.

2.4 Previous Work And Literature

 Relevant Team Experience:

● Development experience with programming languages: Python 2.7, 3.7, JavaScript.

● Experience with building and maintaining database systems.

● Experience with lightweight framework and server deployment.

● Experience with web development creating and updating custom webpages.

● Experience with Selenium:

○ Fully functioning web scraper for custom web pages capable of executing

javascript programmatically.

○ Web crawler with specific setable parameters to control pace, randomization, and

execution time.

○ URL redirects/Web testing using selenium to ensure links properly work and

javascript executes correctly under varying controlled circumstances.

● VMware/VirtualBox virtual machine experience for testing with different operating

systems as well as examining and testing malware in a controlled environment.

● Projects utilizing these skills can be found here:

○ https://github.com/Ltango

13

https://github.com/Ltango

■ Slack-integrations uses certified server for requests to Slack, uses Python

extensively.

■ VTJM uses selenium for URL resolution, uses Python extensively for

automation.

○ https://git.ece.iastate.edu/sd/sdmay19-05/tree/Front_End

■ Some of the interfaces we tested and made for the front end

Existing market products

● VMware Workstation

○ Vmnet-sniffer: captures all virtual machine traffic to the virtual machines at once

to be sorted out later.

■ Isolate HTTP traffic sent through host level load balancer to a random

virtual machine.

■ Determine where specific DNS queries are getting picked up.

■ Low level network management packet realizations seperate from main

network.

○ Works well with Vagrant and CloudShark API requests to automate functions.

Relevant market products

● Wireshark and PerformanceVision Virtual Capture

○ Run concurrently in promiscuous mode.

○ Visualize traffic within virtual server.

○ Virtual switch acts like hub for VMs.

● Phantom TAP and GigaVue

○ Intrusive kernel level sends data to an off site analysis device.

○ Sends copies of data from source seperate from the network.

○ Is a paid service.

○ May require license upgrade costs.

● Vswitch for VMWare and Openvswitch for Virtualbox/Xen

○ Clean and easy install process.

○ Flexible for multiple purposes.

○ Is a paid service.

○ Requires a ESX license.

14

https://git.ece.iastate.edu/sd/sdmay19-05/tree/Front_End

○ Has a physical switch for RSPAN and ERSPAN capabilities.

Difference from market products

● Our solution is completely free.

● Our solution is based entirely on open source material.

● Our solution also comes with an application that will combine resources to automate

traffic capture.

● Our solution will generate virtual traffic automatically with prewritten automation scripts.

● Out solution is completely controlled under our own domain without relying on a third

party service for data capture or analysis.

Citations:

CloudShark. “Packet Capture on VMware Virtual Machines Using Vmnet-Sniffer.” ​CloudShark

Blog​, 9 July 2018, enterprise.cloudshark.org/blog/packet-capture-in-vmware-virtual-machine/.

Rogier, Boris. “Virtual Data Center Traffic Capture and Troubleshooting.” ​Accedian​, Accedian,

18 July 2016, accedian.com/enterprises/blog/traffic-capture-virtual-data-center/.

2.5 Proposed Design

Front-end:

For the front-end development, we are using Django framework to construct the web application

that holds our program together.

Front-end will include the following features:

● Login Page

15

Figure 3 : Wireframe for Login Page

In this template, the user is able to login to the application with his username and

password as authenticated.

● Build Page

Figure 4: Wireframe for the Build Page

This page can be accessed by clicking build on the toolbar. In this template, the user is

able to build a new test by inputting a premade scenario, a client, a server and the

number of iterations he/she wants to run them. Note that multiple clients and server can

16

be added accordingly using the + button. New scenarios can be created in the OSConfig

page.

● Creating a Scenario

Figure 5 : Wireframe for Creating a scenario

This page can be accessed by clicking OSConfig on the toolbar. In this template, the

user will be able to create a custom scenario and save it. The user can choose the

operating system that the scenario will be ran on as well as the applications that the user

would want to run in the scenario. Note that multiple applications can be added via the +

button.

● History

17

Figure 6 : Wireframe for History Page

This page can be accessed by clicking History on the toolbar. In this template, the user

will be able to view the previous tests that has been ran by the user. This page shows

the date that the test is created, as well as the size of the PCAP file. The user can

access the details of the test by clicking on the test number.

● Details of each Test

Figure 7: Wireframe for Displaying Details of each test

This page is accessed by clicking on the number of test in the History page. In this

template,the user will be able to look at the details of particular tests as well as download

the pcap file for the test. As seen, the details include the date created, the client and

18

server used, the scenario used, and the number of iterations ran. The size of the pcap

file is displayed beside the link to download the file. Clicking the next or back button will

bring them to the next or previous test accordingly.

Back-end:

Figure 8: Automated Creation of Virtual Machines

The above diagram represents the creation of the virtual machines that will represent the client

and server relationship for a scenario with predefined inputs (defined in the front end.) However,

inputs do not magically turn into a configured machine. In order to generate fully functional

virtual machines we make use of several open source libraries.

Chef Provisioning allows for “cookbooks” (configuration files) for necessary virtual machine

applications, operating system initialization, etc. to be generated on the fly. This is important

because each scenario may have a unique set of inputs.

OpenStack is a set of services, however, we only need one part, Nova Compute. This is a

controller that will allocate necessary resources and make “hypercalls” (system calls) to the

hypervisor.

Xen is a hypervisor. It is capable of hosting multiple operating systems on top of the host using

paravirtualization techniques (and others.) This is helpful because it allows Xen to be hosted on

most hardware. In addition, it has a defined networking structures for each of the virtual

machines. This opens up possibilities for network traffic logging and routing that will be

necessary for our project.

After our hypervisor is set up and populated we will want to introduce some traffic to be

monitored. There are two vectors of stimulation here; randomized and automated human

19

browsing, and intentional detonation of nefarious software. The former will rely on Python

scripts automating general human traffic with the use of Selenium for its capabilities in executing

JavaScript where other libraries such as lib2 are incapable. There is also the added benefit of

launching the Selenium WebDriver using different browser binaries e.g. Firefox or Chrome. This

will allow multiple randomized and natural instances of web traffic to be generated so that PCAP

data can be stimulated and gathered.

Beyond that will be detonation of potentially nefarious software. Because there are so many

kinds of attacks all with their own associated risks careful preparations must be made. Even

with these preparations there is always a risk of infected files reaching beyond the hypervisor,

as malware exists that specifically targets hypervisors, or relaxed rules on features such as

shared folders can compromise the entire system. Because of this it is highly recommended to

isolate testing machines as much as possible as well as have in depth knowledge of the

malware that is being tested.

Now we will be implementing several preventative strategies:

● Isolated network segment will be obtained through the use of firewall rules

● Gateway for the dirty network must route traffic through a proxy, we will be using

OpenWRT

● Snort to see alerts will trigger for the host capturing network traffic, inline between a

potentially infected host and the gateway.

Following these strategies we will need to introduce the malware files into the virtual

environment, execute them, and capture PCAP data for analysis. There will be two methods of

introducing malware into the virtual environment: manually, and automatically. Upon setup and

configuration, we will set parameters for exactly what we will want running on the virtual

machines. Options will include our python human emulation script with parameters on how long

to run, how often, and under what web driver binaries (Firefox/Chrome). They will also include a

presorted list of basic malware options, what file to introduce, and when to detonate said file.

These malware files will need to be stored securely without executable permissions until they

have been introduced into the virtual environment. Should other malware options want to be

explored, they will have to be manually loaded into the virtual environment and executed.

20

2.6 Assessment of Proposed Design

Strengths:

● Web framework for front-end makes for a more secure, robust web application
○ Organization of views, routes, and static js/html files
○ Modules relating to security concern

● Xen is an old and boastfully secure product. A lot has been done in the way of promoting
security, networking tactics, and easy virtual machine management.

Weaknesses:

● Design is custom. Support will be minimal. Manually reading through product
configuration will be required.

● Xen, although secure and well supported is not the most popular choice. Today alot of
companies make use of KVM or VMware. This results in less “guides” or other relevant
documentation for proposed design decisions.

Trade-offs:
● Multiple open source projects require more configuration. However, this will create a

more supportable system in the future.
● Django allows for easy use of python in the backend. Since the “Network Capture

Environment” is accessible through python this is preferable.

2.7 Technology Consideration
Our project will require building a virtual network based on user input. Therefore, we will be

utilizing a lot of scripts. Our team considered two options for our scripting language, Python and

Ruby.

The project involves a web application. Our team has a lot of web development experience.

We originally wanted to use an MVC framework with CSS, JS, and HTML. However, after

looking at the functionality for this web application, as well as the time we have to build the

application, we decided a proven web development framework would help with time and the

complexibility. The team quickly decided to go with the Django web framework for the

development of the web application. There is also the free tools that our project will be utilizing.

The team researched multiple options for these tools.

21

When considering the scripting languages to use, Dr. Blakely had recommended both Ruby and

Python. The team started off in the direction of Ruby; however, only one member of our team

had ever worked with Ruby. Whereas a majority of the team had a lot of experience in Python.

This brought us to our conclusion. In order to save time by not researching into Ruby, we

decided to use Python as our main scripting language for all of our backend functionality.

The project also requires the help of a few tools for the virtualization aspect of the system. Our

team researched multiple different Hypervisors to use for our project. The team knew a lot

about VMWare and VirtualBox. VMWare was not an option as a license was required.

Therefore, our team studied multiple new hypervisors to use. The two that stood out the most

were, KVM and Xen. The research our team did showed that Xen had a lot of flexibility with its

multiple hooks. KVM seemed to not be as flexible as Xen, but was still a viable option. The

scope of our project brought the team to a conclusion that more flexibility of our hypervisor may

be useful down the road. Therefore, we will be using Xen as our hypervisor for this project.

Our project also requires the configuration of multiple virtual machines based on user

specification. Therefore, we needed to find a configuration management tool to make this

process as efficient as possible. Our team had the value of Dr. Blakely, giving us insight on

three major configuration management tools. These tools, Chef, Ansible, and Puppet, are all

very popular configuration management tools around the world. However, only two of them are

free, Chef and Ansible. Our team made a quick decision on these two possibilities, as Chef

used daemons and had a massive library for learning the software.

Another technology that we had difficulties with is Vagrant. We wanted to use Vagrant to spin

up the virtual machines on our network. However, the connection between Vagrant and Xen is

not as easy as we expected. This required the inclusion of the Libvirt library. A library that

integrates Vagrant with Xen. Once we found this library we have had much more success with

communicating to Xen via Vagrant.

2.7 Safety Considerations

22

The overwhelming majority of development work here is software development that has no

safety considerations. The only safety concerns exist around the transportation, storage, and

maintenance of hardware.

2.8 Task Approach

1. Configure and launch standalone virtual machine using Xen.

2. Configure Chef to be able to ensure compatibility with the project.

3. Capture PCAP traffic in the virtual machine.

4. Configure and launch specific virtual network with 2 virtual machines.

5. Capture PCAP traffic in the virtual network.

6. Develop a server to handle basic requests and integration with a database.

7. Establish database/preliminary storage.

8. Establish front end web application.

9. Store preliminary PCAP data in database/preliminary storage through server.

10. Develop Vagrant to handle required requests according to Figure 1.

11. Develop Chef to handle config requests according to Figure 4.

12. Develop Database (or preliminary storage):

a. Establish tables

b. Establish dependencies

c. Establish meaningful requests within the scope of our project

13. Develop Server:

a. Create and Handle Xen VMs

b. Create and Handle Chef

c. Handle data to and from database

d. Accept and respond to requests from the front end web application

e. Safe and secure

f. Handle compressed PCAP files

14. Develop Web Application:

a. Establish interactivity that suits all use cases as described in figure 5

b. Make user friendly and appealing

23

15. Develop Automation Scripts:

a. Selenium to generate proper traffic

16. Develop Analysis tools for PCAP data.

17. Work on stretch goals:

a. Multiple operating systems

b. Develop users functionality

c. Cloud interactivity

Figure 8: Communication Diagram for Xen

This figure describes how Xen and the Xen API will be interacting with the front end web

application and database through specific calls.

24

Figure 9: Component Diagram for Application

This figure shows how all components of our system fit together and where they will reside.

Figure 10: Sequence Diagram for Application

25

This figure shows the sequence of events between our components for chef’s functionality.

Figure 11: Use Case Diagram for Application

This figure shows all front end enabled use cases for the entirety of the project.

2.9 Possible Risks And Risk Management

Possible risks

● Incompatibility of software involved:

○ Xen needs to handle applications and scripts launching automatically, failure to

do so would be a complete failure of the system.

○ Chef needs to work with Xen to automate configuration, without this step manual

scripts or another application will need to be responsible for automating

configuration of the virtual network.

○ Front end application will need to handle all use cases and properly communicate

with virtual network, server, and server to database. An improper implementation

of that interface will make the application useless

26

● Hardware limitations:

○ Supplied hardware may not be able to hold as many scenario data as we would

like. This factor will be unknown until testing stages of the system.

○ The application may not be able to launch complex virtual networks.

● Time constraints may limit functionality of the system.

● Lack of expertise in virtualization of a network may lead to delays in the development

process.

Risk Management Strategies:

● Communication in development:

○ Slack as main conduit of centralized and recorded communication for the

development team.

○ Properly documenting and commenting on developed code.

○ Proper use of GitHub for efficient and and progressive development.

● Sharing expertise and knowledge:

○ Code reviews will be conducted weekly during development sprints.

● Shrinking prototype executables to fit hardware limitations - or obtain more or better

hardware to meet our goals.

● Project planning and progress reports ensuring minimization of dead time:

○ Use of Trello for task completion and visualization of progress.

2.10 Project Proposed Milestones and Evaluation Criteria

● Milestone 1​​: Install and remotely configure XEN, hypervisor, running on server

○ Test 1​​: Ensure hypervisor properly allocates resources

○ Test 2​​: Ensure hypervisor and server are configured to the network and

accessible from other machine.

● Milestone 2​​: Utilize Chef, configuration management tool, to standardize generation of

predetermined list of daemon and application

○ Test 1​​: Ensure Chef is configured properly on server to access nodes (created

virtual machine)

27

○ Test 2​​: Ensure Chef Cookbooks (config files) are properly accessible by correct

nodes

● Milestone 3​​: Generate and configure virtual machines running multiple operating

systems, initial setup scripts, and initialize as node on chef network

○ Test 1​​: Ensure initial daemon with chef-client is accessible from chef workstation

(located on server.)

○ Test 2​​: Ensure chef node properly pulls updates from server

● Milestone 4​​: Generate behavior of created virtual machine builds, filter to specific traffic,

and store to in PCAP and Netflow.

○ Test 1​​: Ensure PCAP is properly stored to database

○ Test 2​​: Ensure PCAP collects correct data

○ Test 3​​: Perform load testing on database when multiple virtual machines are

running and storing data to database.

● Milestone 5​​: Build and test the web interface using Django Framework and make sure it

works and looks according to the client needs. Also to test the pairing of Django and

Apache Webserver

○ Test 1​​: Ensure that the web interface fits its requirements

○ Test 2​​: Ensure that the web interface works dynamically

○ Test 3​​: Perform some tests on sending and receiving data with Django and

Apache

2.11 Project Tracking Procedures

● Team Work Allocation:

○ https://trello.com/b/elddC5KG

○ Pool tasks (To Do) and delegate to proper team members in team meeting

● Weekly Status Reports and Project Documentation:

○ https://sdmay19-05.sd.ece.iastate.edu/

○ Testing documentation, Github activity, Team member information, and Posted

Status Reports

● Github

○ Documented wiki on design choices and project features

28

https://trello.com/b/elddC5KG
https://sdmay19-05.sd.ece.iastate.edu/

○ Guided walkthroughs on development environment and necessary box setup

○ Progress in code development

○ https://git.ece.iastate.edu/sd/sdmay19-05

2.12 Expected Results and Validation
Our end goal will be a fully functional testing web application. The web application will allow the

user to create different testing scenarios for a virtual network. The user will then be able to test

different malware and applications on their created virtual machines on the virtual network. Our

team plans to have extensive unit testing on these front-end functionalities. Our team has

prioritized the usability of the application. There will be testing on all functionalities of the

front-end after any change. These tests will be run through Hazem.

The application will be able to create up to 5 VM’s on one network. The user is able to

manipulate these machines on the web app through the configuration pages. The user will also

be able to configure how the machines talk to each other. This includes the traffic protocols

sent (HTTP, IMCP, HTTPS, SMTP, etc.), the amount of traffic sent, and the direction of the

traffic throughout the network. The team has scalability as one of our top priorities. The team

will run stress tests on the system throughout the designing process, in order to, get to the

desired usage goals.

The user will also be able to get the traffic data from their loaded scenario. The web application

will allow for filtering and downloading of the desired traffic on the virtual network. The system

will save all of this data into PCAP files. The capturing of the traffic is the main purpose for this

project. Our team will be testing this traffic filter and capture on multiple different browsers.

We plan to validate the project by going through our final test plan of the application. This

should give good insight to how the web application accomplishes all of our use cases as well

as showing that functions work as expected. Our group will also run through multiple test

iterations with the client to see if there are any minor functional changes the client would like.

2.13 Test Plan

29

https://git.ece.iastate.edu/sd/sdmay19-05

This project has multiple components to it. Therefore, the team has planned for thorough

testing of the system. Most of the tests will be integration tests as we are using multiple tools to

come to our one solution. We will also have front-end testing on the web application that will be

primarily based on the usability and user experience.

Throughout the design and development of the system, our team will have a test plan that we

will be adding to as problems arise. This test plan will be used when unexpected problems or

unexpected values occur. The team will update the test plan to account for these problems in

the future testing of the component. The team plans to run through this updated test plan as our

final run through of the entire application and system.

The integration testing will begin at the start of development. Our group will begin the

development of the client and server. The first few integration tests between the connection of

our client and server will begin.

From here we begin the integration of our hypervisor and our configuration management tool,

Chef. The connection between Chef and our hypervisor will be crucial for our project to

succeed. All of the integration testing for this connection will be run from the individual boxes

themselves, as well as from the Chef Workstation. These tests will be looking for edge cases

from possible inputs into the configuration management tool.

The integration of the traffic data from the system to the database and then to the web

application will account for a lot of the testing time. This data must be able to be captured,

saved, and filtered. This is the most important aspect of the system. Our team will be testing

every available protocol, as well as filtering through all possible combinations. The team will

also be pushing the system to its data capturing limits through stress tests.

The front-end of this project must be user friendly as well as very hands on with the scenarios.

Our team will be creating multiple scenarios in order to find any headaches or problems with the

front-end functionality. We will be going over the visual appeal of the front-end as well.

30

The final testing will be done by the entire team over the whole system. This testing will be

through the team-contributed test plan that we made throughout the development process. This

will include all problems that we ran into, as well as small unit tests.

3 Project Timeline, Estimated Resources,

and Challenges

3.1 Project Timeline
Semester 1 → Gantt Chart

Figure 12 : Gantt Chart for first semester

● The Research above means to keep learning as we go through projects, and not learn a

specific task and then try to brute force the project at one.

● The ​3 ​​tabs describing the project plan are important because they provide us with a

series of steps to help implement our project on time.

31

● Building a project is building an interface that holds all pieces of our project. For

example, a website that holds all aspects of the project together

● Setting up hypervisor is one of the crucial steps in this project. A hypervisor acts as the

brain of our program, which tells every component how to do the job.

● Testing VM’s is starting a couple of virtual machines and testing them before applying

them to our project.

● Starting Chef is analyzing and configuring our Chef script that will eventually be

responsible for creating our virtual machines.

● Testing PCAP and Netflow is working with these types of traffic recorders before

including them in our project.

● First semester Wrap is when we review everything and make sure every component is

working well separately, before merging all of them together in the second semester.

Semester 2 → Gantt Chart

Figure 13 : Gantt Chart for second semester

● Configuring a user input such that, when the user commands something, the program

retrieves that command and does some work in the back end.

● Connect the client and server to the hypervisor before adding any other parts to the

project..

● Adding the Xen software to the hypervisor to enable direct commands between the two

of them.

32

● Adding Cookbooks and Allowing Chef to sends commands to the virtualization software,

and creating virtual machines with certain requirements via Xen.

● Configuring Packet Capture (PCAP) and Netflow to record traffic arriving and leaving

from one certain virtual machine.

● If time allows, add extra features that the clients would like to be added in the program,

such as virtualization for Windows 10.

● Prepare for final presentation and final submission in the last 2-3 weeks of the semester.

3.2 Feasibility Assessment

Risk Assessment:
● End product goal is ambiguous. Although individual parts (initiate hosts, generate

behavior on hosts, etc.) are defined, the approach itself is unclear.

○ Ex: The “Attack Scenario” is a series of actions. The extent of this is unknown.

Creating the behavior of scenario itself, such as: generating specific web traffic

traffic, attack execution, etc. is going to be heavily scenario dependent and

possibly unique for each scenario. How to approach this is in a automated

system is not clear.

● Project has no clear completion criteria. If we are able to initialize a set of hosts for an

attack scenario this does not define “completion.” Notion has been made toward several

network protocols and attack vectors, however, this has been and will be subject to

change as project progresses.

● Project is at risk to not be completed in allotted time frame, for such reasons:

○ Students designing the “network capture generator” have no experience in

system design. This has, and will lead to failed design decisions.

○ Python, although ideal for back end glue is not familiar to any of the students.

Learning and design patterns will be imperfect, and subject to frequent change.

○ Students designing the front end have little to no experience with web

frameworks or best practices. This will lead to slow development, and will most

likely need to be changed frequently.

33

● Scope of work is fluid. The actual extent of “attack vector automation” is unknown.

● Using multiple open source projects such as xen, openstack, and chef is possible.

However, this is a lot. Especially for a student who is new to concepts such as

“virtualization”. This risk, over time propagates. What seems manageable becomes less

manageable a week later when student learns new concepts.

● Scripting a single attack is manageable. However, creating an environment that is built to

run different attacks remotely on hosts is difficult. How the server stores attacks,

accesses, and executes attacks on virtual hosts will define the manageability of the

system itself.

Cost Considerations:
● Project makes use of open-source projects and is software based. DC

3.3 Personnel Effort Requirements

Major Requirements:

Task Description Estimated Time

Required

Research Xen Research on how Xen suits our requirements and

how to use it for our project

10 hours

Research Chef Research on the Chef suits our requirements and

how to use it for our project

10 hours

Research pairing

Xen and Chef

Research on how the pair of Xen and Chef work

side by side each other to achieve our

requirements

10 hours

Research Django

Framework

Research on how to use the Django Framework

to develop our front end

10 hours

Research

Apache

Research on how to use the Apache webserver 10 hours

34

Webserver

Research the

pairing of Django

and Apache

Webserver

Research on how to pair Django and Apache side

by side for our interface and server functions

10 hours

Research on

other choices of

builds and

hypervisor

pairings

Research on the other choices that are available

to us to use as a suitable technology and

comparing them with our current choices.

30 hours

Testing Virtual

Machines

Come up with several test cases or scenarios that

we can run on the virtual machine according to

our needs

50 hours

Testing PCAP

and NetFlow

Come up with several test cases or captures that

can used as examples of outputs we would want

according to our needs

30 hours

Setting up

Hardware

This task requires setting up hardware in the

department lab to be used as a “server” to run our

Virtual Machines

10 hours

Design Project

Layout

Developers are required to come up with a design

of the interface of the project

20 hours

Setup Xen Setting up Xen to work in ways that fits our needs

and requirements

30 hours

Setup Chef Setting up Chef to work in ways that fits our

needs and requirements

30 hours

Develop

Frontend

Developing the frontend of the project, such as

the layouts and the webpage using various

60 hours

35

libraries .

Develop Backend Developing the backend of the project, such as

integrating the automation of the virtual machines

that will be used in our project.

90 hours

Testing Full

Project

This will require the develops to run multiple test

cases to test the major functions of our project

and testing the final project to work according to

our requirements

50 hours

Beautifying layout

of Project

This will be a optional task that requires the

developers to further beautify the layout of the

project and make it more user-friendly

20 hours

Documenting

Software

Members are required to use proper

documentation of all code, design pattern and

architectures used throughout the project

100 hours

Table 1 : Major Requirements

3.4 Other Resource Requirements

To conduct the project, there are a few other resources that are required on both the software

and hardware sides. On the software side, the team will be using GitHub for code control as well

Google Drive to maintain the documentation required for the project. The Google Drive storage

will be provided by Iowa State University while GitHub will be provided by the Electrical and

Computer Engineering Department’s Electronics and Technology group. To draw our diagrams,

we will be using both MockFlow and DrawIO. We also will be using NotePad++ as our preferred

IDE. NotePad++ is provided as a free and code produced on it can be used/redistributed under

the terms of the GNU General Public License. As for the development of the frontend, we will be

making use of the Django Framework, which is a free and open source web framework that is

written in Python. As of now, we are considering the use of either Apache or Nginx for our

36

webserver. On the hardware side, the team will be using 2 desktops provided by the Electrical

and Computer Engineering Department’s Electronics and Technology group to be used in the

department’s lab as our “server” that will be running the virtual machines as well as databases.

3.5 Financial Requirements

The project is proposed to be developed cost free. The hypervisor used for the project, Xen, is a

free and open-source software that is only subjected to the requirements of the GNU General

Public License. For the configuration management of the virtual machines, the team will be

using Chef. Chef has a paid as well as a cost-free version. The cost-free version of Chef will

most probably be enough to support the requirements needed for the project.

3.6 Standards

PEP8
● Code styling standard for all python code

CAPEC
● Active catalog of attack vectors

● Tasks executed in our application for any given attack scenario should correlate directly

to the matching vector described in cataloged attack scenario

IEEE Standard for Local and metropolitan area networks - Bridges and Bridged Networks
● Background​: Network developed must contain malicious traffic to specific host and client.

Accomplished by bridging the traffic generated by each host through a proxy.

● Section 7 as outlined in this document describes best practices when bridging a network

of VLANs. Incorporating this standard will prevent network leaks that could result in

consequences for victim users outside network.

37

4 Closure Materials

4.1 Conclusion
Cyber attacks are becoming an increasingly bigger problem for the world every day. The

problem with trying to prevent any attack on a system is that we can only stop what we know of.

Therefore, the best mitigation for stopping any cyber attack on a system is to test the actual

attack on your system. You can then identify the symptoms of those attacks on your system

when they are attempted.

The only way to safely test a malware on your own system is through a sandbox of your system.

This would be a virtual environment where you can record and control the activity of your

system and the malware. There have been tools and software made just for these tests;

however, these tools and softwares are not cheap and can sometimes be very strict on their

configuration.

Therefore, our solution is to create a free, fully configurable testing software. Our team will build

a web interface that will control a virtual environment. This will allow users control over the

systems added to the environment as well as control over all the data sent over the virtual

network. This solution will help push the research for cyber-security forward.

4.2 References
Websites used for Research of Tools:

1. https://www.xenproject.org/

2. https://wiki.xenproject.org/wiki/Xen_Project_Beginners_Guide

3. http://www-archive.xenproject.org/products/xenhyp.html

4. https://www.xenproject.org/developers/teams/xapi.html

5. https://docs.chef.io/chef_overview.html

6. https://www.seleniumhq.org/

7. http://www.tcpdump.org/manpages/pcap.3pcap.html

8. https://www.solarwinds.com/what-is-netflow

38

https://www.xenproject.org/
https://wiki.xenproject.org/wiki/Xen_Project_Beginners_Guide
http://www-archive.xenproject.org/products/xenhyp.html
https://www.xenproject.org/developers/teams/xapi.html
https://docs.chef.io/chef_overview.html
https://www.seleniumhq.org/
http://www.tcpdump.org/manpages/pcap.3pcap.html
https://www.solarwinds.com/what-is-netflow

9. http://xapi-project.github.io/xen-api/usage.html

10. https://wiki.xenproject.org/wiki/Xen_Project_4.9_Man_Pages

11. https://wiki.xenproject.org/wiki/Xen_Networking

12. https://help.ubuntu.com/community/Xen

13. https://discourse.chef.io/t/resolved-advise-on-first-chef-invocation-on-a-vm/2847/3

14. http://www.tomsitpro.com/articles/configuration-management-tools,2-920.html

15. http://www.admin-magazine.com/Articles/Automating-with-Expect-Scripts

16. https://learn.chef.io/#/

17. https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/modwsgi/

4.3 Appendices
All diagrams were used in explaining the parts

39

http://xapi-project.github.io/xen-api/usage.html
https://wiki.xenproject.org/wiki/Xen_Project_4.9_Man_Pages
https://wiki.xenproject.org/wiki/Xen_Networking
https://help.ubuntu.com/community/Xen
https://discourse.chef.io/t/resolved-advise-on-first-chef-invocation-on-a-vm/2847/3
http://www.tomsitpro.com/articles/configuration-management-tools,2-920.html
http://www.admin-magazine.com/Articles/Automating-with-Expect-Scripts
https://learn.chef.io/#/
https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/modwsgi/

